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ORIGINAL STUDY

Strangeness Detection from Crowded
Video Scenes by Hand-Crafted and Deep
Learning Features

Ali A. Hussan *, Shaimaa H. Shaker, Akbas Ezaldeen Ali

Department of Computer Science, University of Technology – Iraq, Baghdad, Iraq

ABSTRACT

Video anomaly detection is one of the trickiest issues in intelligent video surveillance because
of the complexity of real data and the hazy definition of anomalies. Since abnormal occurrences
typically seem different from normal events and move differently. The global optical flow was
determined with the maximum accuracy and speed using the Farneback approach for calculating
the magnitudes. Two approaches have been used in this study to detect strangeness in the video.
These approaches are Deep Learning (DL) and manuality. The first method uses the activity
map’s development of entropy to detect the oddity in the video using a particular threshold. The
second method uses a Convolutional Recurrent Auto Encoder (CRAE). CRAE is a network that
combines a convolutional autoencoder and an attention-based Convolutional Long-Short-Term
Memory (ConvLSTM) network. The irregularity regarding the temporal pattern and the spatial
irregularity, respectively, might be captured by the convolutional autoencoder and ConvLSTM
network. The current output properties of each CovnLSTM layer were extracted from their
hidden states using the attention method. Comparing the error with an experimentally established
threshold, anomalies were specified to exist and a convolutional decoder was used to recreate the
input video clip and the testing video clip. The best detection of whether in-frame variation was
abnormal or normal, a trial-and-error threshold was 0.04 for handcrafted features through the
University of Minnesota (UMN) dataset and 0.00035 for DL features through the avanue dataset.

Keywords: Strangeness detection, Hand-crafted, Optical flow, Deep learning, Autoencoder

1. Introduction

The value of camera video streams is equivalent to that of other significant sources,
including sensor data, social media data, medical data, security data, and cutting-edge data
from space research [1]. With the exponential growth of video data, there is an increasing
need to learn and identify rare, unusual, and interesting events.
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Fig. 1. Examples of video distortions. The red part of each image represents abnormal objects [6].

Applications that rely on visual observation must be able to detect these anomalies in
videos. They frequently have a very slim likelihood of occurrence [2]. These anomalies
must be manually detected, and it is a very delicate task that calls for 10 more people than
are typically available. As a result, quick, automated, and precise detection is now required.
So, state-of-the-art technology necessitates a considerable amount of configuration work
on each video stream before deploying the video analysis process. Additionally, it is
challenging to generalize the detection model of other monitoring scenes [3]. Due to
its great noise, dimension, and variety of interactions and events, video data presents a
paradigm and a challenge. Running in a park could be normal, yet running in a restaurant
might not be [4]. Due to such difficulties, Machine Learning (ML) techniques must identify
video patterns that produce anomalies in practical applications. When security is a top
priority, installing a camera must be installed anywhere [5]. This is illustrated in Fig. 1.

It appears tedious and time-consuming to manually monitor. In many situations, like
the detection of violence, the identification of theft, the likelihood of an explosion, etc.,
security could be characterized in several ways. Security refers to practically all abnormal
situations in crowded public areas [7]. Because it includes a group activity, violence
is tough to handle; due to the limits imposed by the real world, it can be exceedingly
challenging to analyze unusual or abnormal activity in crowd video scenes [8]. Computers
will eventually be able to think like humans thanks to Artificial Intelligence (AI). By
including learning and training components, ML makes it far more even [9]. The idea
of DL, which automatically extracts features or the variables of difference that separate
things from one another, is made possible by the availability of large datasets and high-
performance computers. Video surveillance data is one of the many data sources that
contribute to terabytes of big data [10]. Widespread surveillance data is available via
cameras in industrial and residential regions, commercial enterprises, and educational
institutions. Cameras are placed in centers, public transportation, and places of worship,
contributing to public data cities and private data, respectively [11]. This is illustrated in
Fig. 2.

Fig. 2. The scooter is going in reverse [12].
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The main contribution of this study is to propose an algorithm that can detect strangeness
from crowded video scenes by using hand-crafted and DL techniques to extract features.
The outline of this study is as follows: Section 2 presents the hand-crafted features.
Section 3 explains the DL techniques. The proposed oddity detection algorithm is present in
Section 4. Section 5 illustrates the experimental results. Finally, the conclusion and future
work is presented in Section 6.

2. Hand-crafted features

Learning techniques were utilized in the study of video anomaly detection to learn the
anomaly detection model while using man-made features. Man-made features were used to
represent the motion and appearance characteristics of people. These techniques fall into
two categories: anomaly detection approaches depending on paths and anomaly detection
approaches depending on cubes, and whether the object detection and tracking approach
is used. Every motion trajectory serves as an image coordinate sequence for the target
[13].

2.1. Optical flow

The relationship between temporal changes and spatial properties in images, or motion,
is an essential feature of frame sequences. It demonstrates dynamics tire. Optical flow
estimation means displaying motion data from an image sequence. Optical flow is a 2D
animated map that displays the 3D motion of a scene on the image plane. Remember that
if the camera position parameters are given, the optical flow module can also be used to
extract parallax in fixed stereovision [14]. The optical flow will work when the pixel in-
tensities do not fluctuate with time, the nearby pixels move similarly, the motion is locally
smooth, and the visible gradients are static. This is illustrated in Equation (1) and Fig. 3.

U.Ix + V.Iy = It (1)

where V and U represent the optic flow components in vertical and horizontal directions.
Ix, Iy, and It are brightness function derivatives from the x and y image coordinates at
time (t) [15].

Since the image pixels and intensity are the same from one frame to the next, Equation (2)
states that the pixel displacement is (dx, dy):

I(x, y, t) = I(x+1x, y+1y, t+1t) (2)

Fig. 3. Pixel offset in two consecutive images. (A) and (B): Blue pixels and red pixels correspond to the image at
time dt and t, respectively [15], where I (x, y, t) is a pixel in the first frame, which advances to the following frame,
taking dt time.
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Fig. 4. Categorization of feature representation.

where I (x, y, t) is the assumed pixel at locations (x, y, t), 1x, 1y, 1t stands for movement
between the two frames, and c represents a real-valued constant number [16].

2.2. Global and local features

Local and global optical flow approaches are distinguished from one another. While
global/dense approaches process every pixel in the image, local approaches only require
processing a small portion of the total number of pixels on the image. For additional flow
data to be available in sparse/global flow extraction techniques. The global features are
those where each image is captured by a single feature vector that contains data from the
entire image. The components of the image, such as specific objects or regions, receive
no consideration. Once the features of each image have been calculated, a distance metric
might be used to determine how comparable any two images [17]. This is illustrated in
Fig. 4.

2.3. Farneback method

The Farneback technique is a two-frame motion estimation algorithm that utilizes poly-
nomial expansion to approximate the neighborhood of each image pixel. This is illustrated
in Fig. 5 [15].

Each level of the image pyramid created by the Farneback algorithm has a lesser
resolution than the level before. The algorithm may follow points at multiple resolution
levels, starting at the lowest level when a pyramid level is higher than 1. The algorithm can
manage bigger point displacements between frames by expanding several pyramid levels
and this will be done by more calculations [18]. This is illustrated in Fig. 6.

With each one of the levels, the algorithm improves the tracking in this way. The
algorithm might manage large pixel motions that could span distances bigger than the
size of the neighborhood [19].

3. Deep Learning

Researchers have started to investigate the detection of abnormal crowd behavior de-
pending on DL due to the active development of AI, which has produced several results
[20]. DL algorithms, in contrast to craft-based approaches, concentrate on extracting high-
level aspects of the movement and appearance of pedestrians in video. DL can differentiate
between abnormal and normal behavior [21], offering a 3D convolution network-based
spatiotemporal autoencoder. The decoder reconstructs the frames after the encoder takes
the temporal and spatial information [20]. By calculating, the reconstruction will be
lost using the Euclidean distance between the reconstructed and original batch, and the
abnormal events are found [22, 23].
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Fig. 5. Image pyramid with four levels. At each level, the image is downsized. Optical flow computation starts at
the top of the pyramid (level 4) and ends at the bottom (level 0) [15].

Fig. 6. Demonstration of the behavior of dense optical flow (utilizing the Farneback approach) [18].

Deep Neural Networks (DNNs) are used for automatic video learning, video representing,
and feature extracting from both temporal and spatial dimensions. This is done through
performing 3D convolutions. As the name implies, autoencoders have two stages: encoding
and decoding. To reduce the dimensionality, there is a need to set the number of encoder
output units lower than the input [24]. The Back Propagation (BP) method is typically
used to train models in an unsupervised manner, reducing the reconstruction error of
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Fig. 7. Training autoencoder for video Strangeness detection [28].

Fig. 8. Testing phase for video Strangeness detection [28].

the decoding outputs from the original inputs. A nonlinear activation function allows an
autoencoder to extract more beneficial features [25].

The encoder extracts temporal and spatial information by extracting frames from the
given input video. While the decoder reconstructs the frames again into the normal form
and reconstructs the video [26].

On normal videos, the autoencoder was trained. Discovering abnormal events will
depend on the custom video that feeds Euclidean distance and the frames predicted by
the autoencoder. The main function of the convolutional network is to extract features
from the input image [27]. Figs. 7 and 8 illustrate this.

Through learning image attributes from small squares of input data, convolution
preserves the spatial relation between pixels. Mathematically, the convolution process
produces dot products between the network design, as suggested in Fig. 2. It accepts an
input sequence of length T and produces an output sequence. This output sequence is a
reconstruction of the input sequence. The number on the rightmost side indicates the size
of the output layer. After processing T= 10 frames, the spatial encoder takes one frame at a
time as input. The encoded features from T = 10 frames are concatenated and sent into the
temporal encoder for motion encoding. The decoders mirror the encoders to reassemble
the video volume [29].

4. Proposed oddity detection algorithms

This section presents the hand-crafted feature and DL-based anomaly detection
method.
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Algorithm 1. Strangeness detection through hand-crafted feature.

Input: RGB video
Output: give ALARM on video when Strangeness detection
Begin
1 Repeat

2 While (video frames not terminated) do
3 Convert video into sequential frames
4 Convert RGB frames into gray
5 Apply Gaussian filter on each frame.
6 Estimate activity map (Optical Flow)
7 Apply to post-preparing (Median Filter)
8 Calculate the difference between two frames
9 Estimate entropy from the difference
10 If the entropy level > threshold

give ALARM on video (abnormal)
11 else

give normal video
12 End while

13 Repeat this until frames are end
14 End

4.1. Hand-crafted feature

Optical flow and entropy level approaches have been used to extract global features.
These approaches have been used because a video global descriptor can be defined as a
set of features describing a video as a whole and, thus, is best capable of describing the
normal patches of the video. Algorithm 1 shows how the hand-craft features method can
be used to detect strangeness.

At first, the video must be pre-processed by converting it to gray. This is done because
the important thing in the proposed algorithm is the movement of the object, not it is color
density. After that, the video is converted into several sequential frames through resolution.
Then, a Gaussian filter is applied for noise reduction. The video stream is broken up into
frames in the pre-processing module, and the dynamic and static features were extracted
from each frame. For each old and new frame, the changing percentage was calculated by
calculating the size of the optical flow. Then, the entropy of the frames is measured, and
through the experiment, a certain threshold was determined for each video to show the
abnormal conditions in the video. If the abnormal movement has occurred in the video, a
printing sign or warning informs is displayed and prints a graph of the entropy concerning
the time of occurring abnormal movement as shown in Fig. 9.

4.2. Deep-learning-based Strangeness detection method

Two mechanisms have been used for training and testing by using the 3D convolution
autoencoder and threshold, as shown by Algorithm 2 and 3.

Set up a function to process and save video frames, then describe the directory path
variable. Call the store method and extract the frames from the video. It converts the input
image into arrays of numeric data for computer processing. Those frames are retrieved and
processed individually, and the image list should be saved in a numpy file. To produce a
saved model, the spatial autoencoder was designed to analyze the encoder model using the
stored frames. This is then utilized to analyze the abnormal events, and all instructional
films solely include instances of typical occurrences. Both abnormal and normal events can
be shown in testing recordings. Table 1 shows the architecture of the proposed model.
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Algorithm 2. Strangeness detection through deep learning (training phase).

Input: RGB video
Output: training model
Begin
1 Repeat

2 While (video frames not terminated) do
3 Convert video into Sequential frames
4 Resize RGB frames into 277 × 277 × 10
5 Convert RGB frames into gray
6 Normalization: Divide the mean values on the standard deviation for each image
7 End while
8 Create spatial autoencoder architecture
9 Model training (using training video)
10 Save training model

11 Until training video frames terminated
12 End

Algorithm 3. Strangeness detection through deep learning (testing phase).

Input: RGB test video, The trained model, threshold (trial and error)
Output: give ALARM on video when Strangeness detection
Begin
1 Repeat

2 While (video frames not terminated) do
3 Convert video into Sequential frames
4 Resize RGB frames into 277 × 277 × 10
5 Convert RGB frames into gray
6 Normalization: Divide the mean values on the standard deviation for each image

7 End while
8 Production test frame using the trained model
9 Calculate the value of the loss before and after testing the model in the same frames by using the

Euclidean distance:

d =
√

(x2− x1)2
+ (y2− y1)2 where x1, y1, x2, y2 are coordinates of two points

10 If the loss > threshold
give ALARM on frames (abnormal) and save it

11 Until testing video frames terminated
12 End

Table 1. Architecture of the model proposed.

Layer (type) Kernel size Strides Activation Output shape

Input – – – 10 × 277 × 277
(Conv3D) 1 (11,11,1) (4,4,1) tanh (None, 55, 55, 10, 128)
(Conv3D) 2 (5,5,1) (2,2,1) tanh (None, 26, 26, 10, 64)
(ConvLSTM2D) 1 (3,3) 1 return_sequences = True (None, 26, 26, 10, 64)
(ConvLSTM2D) 2 (3,3) 1 return_sequences = True (None, 26, 26, 10, 32)
(ConvLSTM2D) 1 (3,3) 1 return_sequences = True (None, 26, 26, 10, 64)
(Conv3DTranspose) 1 (5,5,1) (2,2,1) tanh (None, 55, 55, 10, 128)
(Conv3DTranspose) 2 (11,11,1) (4,4,1) tanh (None, 227, 227, 10, 1)
Output – – – 10 × 277 × 277

where Conv is a convolutional layer, LSTM is a ConvLSTM layer, Transpose is a deconvolutional layer, Output
is the output layer. Conv1, Conv2, Transpose1, and Transpose2 make up the encoder and decoder, respectively.

Make a test for a different video and then check the outcomes of abnormal event
detection on any custom video. The abnormal events are detected depending on the
Euclidean distance of the custom video feed and the frames predicted by the autoencoder.
The threshold controls how responsive the detection system should be. For instance, setting
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Fig. 9. Strangeness behavior detection algorithm based on global optical flow and entropy level.

a low threshold causes the system to become responsive to events in the scene, resulting
in more alarms being triggered, as shown in Fig. 10.

5. Experimental results

The hand-crafted feature utilized a University of Minnesota (UMN) dataset to find
unusual crowd detection. UMN dataset includes three scenes—the first is outdoor, the
second is indoors, and the third is outdoors—each video at a frame rate of 30. (320 × 240
× 3) is the RGB frame size (see Fig. 6). The dataset contains the raw data needed to classify
abnormalities, as shown in Fig. 11.

The Avenue dataset comprises 21 testing videos (15,324 frames) and 16 training videos
(15,328 frames) for the DL phase. The training set of the dataset contains a small number
of anomalies. Additionally, normal situations are scarcely depicted in the training videos.
Each video frame has a resolution of 360 by 640 pixels. Ground-truth locations of anoma-
lies are reported for each test frame using of pixel-level masks. Both anomalous and normal
events can be found in the test set. Anomalous events discovered within the test frames
are shown in Fig. 12.

5.1. Hand-crafted feature

When the proposed algorithm was applied to the three videos of the dataset, and they
were crowded and external, it was noticed after taking pictures of the results before and
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Fig. 10. Strangeness behavior detection algorithm based on deep learning.

Fig. 11. UMN data-set samples for each of 3 scenes: Normal (green) and Abnormal (red).

after the occurrence of strangeness in the video and the sudden movement of the crowd,
the big difference in the visual flow when the activity map of the people in those videos
changes, and calculating the difference between the previous and subsequent activity map
in the frame sequence, after producing the optical flow, it utilizing Farneback technique,
an activity map has been created with the use of multiple frames for showing the continuity
regarding the flow over time. Then, the activity map was utilized to generate the entropy
and show the max entropy level, and anomaly detection in the video was identified.
ALARM was given, as shown in Figs. 13 and 14.

The result shows that the maximum entropy level for outdoor video is more than 0.45.
However, the maximum entropy level for indoor video is more than 0.16. with a threshold
of 0.04) which was obtained experimentally (for classifying each frame as abnormal or
normal in a given sequence, as shown in Table 2.
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Fig. 12. Sample images from the Avenue dataset showing normal and anomalous events.

Fig. 13. Indoor and outdoor Localization of strangeness from Crowded Video Scenes based on optical flow.
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Table 2. Shows the entropy level and threshold for indoor and outdoor videos.

UMN dataset video Number of frames Entropy threshold Max entropy level

Outdoor video1 614 0.04 0.58
Indoor video2 575 0.04 0.165
Outdoor video3 638 0.04 0.48

Fig. 14. Entropy level of the indoor and outdoor video.

5.2. Deep Learning

The visual results demonstrate the effectiveness of the suggested method in detecting
anomalies present at the frame level (a global anomaly in the UMN dataset) and pixel
level (a local anomaly in the Avenue dataset).

5.2.1. Training phase
After preprocessing the training videos where the videos, is converted into frames and

each frame into an array and resized is converted into a gray type, image normalization
is made for the pixel values to be between 0 and 1. After that, the videos were trained
using the proposed model, where five training videos were used from Avenue dataset with
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Fig. 15. The number of frames for five training videos used.

Fig. 16. (a) and (b) loos and accuracy values after training the Avenue dataset videos for each epoch.

the size of 2837 frames shown in Fig. 15 and through the use of a threshold equal to
0.00035, which was obtained experimentally by trial and error, loss and accuracy results
were obtained for each iteration, as shown in Fig. 16.

5.2.2. Testing phase
After completing model training, it will be stored and then predicted and tested us-

ing 12 test videos (6010 frames) from Avenue dataset, as shown in Fig. 17. The same
preprocessing operations are performed on the test videos. After that, the testing phase will
be made by using the trained model. The results were obtained for abnormal movements
in the test videos marked by red text (abnormal event) of each detected frame, as shown
in Fig. 18.

Fig. 17. The number of frames for 12 test videos used.
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Fig. 18. The sample of anomalous detection results of the proposed approach marked by red text (abnormal event).

6. Conclusions

This study provided an overview of the most recent technologies for recognizing human
actions. Modeling the crowded video scene and identifying abnormal movements should
be done quickly and accurately. This is accomplished by supplying global and local
features. Global and local features are powerful and effective. Anything that deviates from
these features of natural movements is regarded as abnormal movement. To improve the
recognition of human actions from 3D sensor data, anomalies in the object should be
identified through tracking, recording movements, extracting features, and ensuring that
these features are strong and separate the object from other objects. This is done by using
one of the hand-crafted and DL approaches. The result shows that the maximum entropy
level for indoor video was less than 0.16, and for outdoor video, it was greater than 0.45 in
the hand-crafted feature method. In the DL method, the largest loss (difference) obtained
during the training phase was 0.0875, and the largest accuracy (similarity) was 0.7825.
This represents the difference and similarity between the frames before and after training.
Experiments on two datasets proved that the features learned in the proposed approach
were very effective for the detection task.
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