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ABSTRACT

Artificial neural networks play a crucial role in machine learning and there is a need to
improve their performance. This paper presents FOXANN, a novel classification model that
combines the recently developed Fox optimizer with ANN to solve ML problems. Fox optimizer
replaces the backpropagation algorithm in ANN; optimizes synaptic weights; and achieves high
classification accuracy with a minimum loss, improved model generalization, and interpretability.
The performance of FOXANN is evaluated on three standard datasets: Iris Flower, Breast Cancer
Wisconsin, and Wine. The results presented in this paper are derived from 100 epochs using
10-fold cross-validation, ensuring that all dataset samples are involved in both the training and
validation stages. Moreover, the results show that FOXANN outperforms traditional ANN and
logistic regression methods as well as other models proposed in the literature such as ABC-ANN,
ABC-MNN, CROANN, and PSO-DNN, achieving a higher accuracy of 0.9969 and a lower validation
loss of 0.0028. These results demonstrate that FOXANN is more effective than traditional methods
and other proposed models across standard datasets. Thus, FOXANN effectively addresses the
challenges in ML algorithms and improves classification performance.

Keywords: Artificial neural network, Classification, FOX, Machine learning, Optimization

1. Introduction

Machine learning (ML) consist of algorithms and techniques that aim to train machines
(computers) to solve real-world problems, increase performance, increase production,
enhance efficiency, and reduce errors caused by humans or traditional techniques [1].
Supervised learning is a subset of the ML field. It is termed supervised because the machine
is provided with the inputs and outputs (target) during the training process. This type of
training lets the algorithm know the relationships between the inputs and output to achieve
optimal results in the prediction process when it has been fed with inputs only [2].
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Artificial neural networks (ANNs) are considered the most used supervised classifiers
and have solved problems effectively since they were developed [3]. Furthermore, ANNs
simulate the human brain’s work by modeling it mathematically; for example, it mimics
the connections among neurons, the functions of neurons, and the memory of the neurons
[4, 5]. Research is continuing to improve the field of machine learning in general and
neural networks in particular because ANNs play an essential role in most machine learning
algorithms and problems such as convolutional neural networks (CNNs), deep learning,
transfer learning, natural language processing (NLP), and generative adversarial network
(GAN) [6, 7].

Improving the neural network is necessary due to increases in data and its complexity,
computer resources, cloud solutions, cybersecurity threats, and generative AI [8]. How-
ever, optimization is widely applied in ANN such as swarm algorithms or evolutionary
algorithms, i.e., artificial bee colony (ABC), ant colony optimization (ACO), particle swarm
optimization (PSO), genetic algorithms (GA), and differential evolution (EA). Moreover,
some researchers have examined the tuning of ANN hyperparameters, such as learning
rate, initial weight, momentum, and epochs, while others have attempted to choose the
best structure for an ANN (i.e., the number of hidden layers, and the size of the hidden
layer) [9, 10].

This paper proposes an improved ANN based on the Fox optimizer (FOX), a state-of-the-
art metaheuristic optimization algorithm that simulates the behavior of red foxes hunting
prey [11]. This novel classification model, called FOXANN, aimed to increase accuracy and
reduce loss in classification problems by eliminating the backpropagation algorithm from
the ANN and employing FOX to optimize the synaptic weights. Moreover, the authors
utilized FOX because it uses a static balance between exploitation and exploration that
leverages the diversity in the search space to reduce the probability of entrapment in
local optima. In contrast, the backpropagation algorithm uses gradient descent meth-
ods that focus on exploitation only, enabling the process of training ANN entrapped with
local optima, especially when the number of samples is insufficient.

Three standard datasets have been used to evaluate the proposed FOXANN. First, the
Iris Flower dataset consists of 150 instances and contains four features, with three classes:
Setosa, Versicolor, and Virginica. Second, the Wine dataset consists of 178 instances and 13
features, with three classes determining the type of Wine. Lastly, Breast Cancer Wisconsin
dataset consists of 569 instances and 30 features with two classes: Malignant and Benign
[12].

The main contributions of this paper are highlighted as follows:

1. FOXANN utilizes the FOX algorithm instead of the backpropagation algorithm in an
ANN to avoid the problem of local optima.

2. This replacement improves accuracy, robustness against local optima, and in-
terpretability due to FOX’s superior optimization capabilities compared to other
optimization techniques.

3. FOXANN provides a deeper understanding of decision-making processes by opti-
mizing synaptic weights more effectively than other techniques, and thus, FOXANN
represents a significant advancement in the field of ML algorithms.

The rest of this paper is organized as follows: Section 2 presents the latest studies that
have used optimization methods to improve ANNs. Section 3 presents the materials and
methods used in this paper. Section 4 and Section 5 list and discuss the results with
comparisons. Finally, Section 6 presents conclusions and suggestions for future directions
in ANN improvement.
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2. Related work

This section reviews the related literature on ANN improvement using different opti-
mization techniques. In recent years, many optimizers, such as ABC, GA, EA, and PSO,
have been used to improve ANN, and these improvements have been crucial for solving
ML problems.

The study by Awan et al. [13] proposed a hybrid model that utilized ABC and an ANN
to efficiently optimize a set of neuron connection weights for an ANN, producing an
alternative scheme to traditional ANN training used for short-term electric load prediction.
The results of the proposed model showed an improved version of the ANN with higher
accuracy and a faster convergence rate with prediction tasks [13]. A recently proposed
model that adopts ABC used modular neural networks (MNNs) to optimize the weights.
The results of ABC-MNN showed generalization performance with higher training accuracy
on the Iris Flower dataset [14]. Moreover, a model called CROANN, which uses chemical
reaction optimization (CRO), was proposed to design the structure and tune the weights
of an ANN. CROANN was evaluated using the Iris Flower and Breast Cancer Wisconsin
datasets, and the results showed that CRO is superior to many EA strategies with ANN [15].
Furthermore, six hybrid ANN models based on adaptive EA were proposed to optimize ANN
parameters and feature selection evaluated on two meteorological datasets as prediction
tasks. The results showed that these proposed models can be used as generic models
with improved forecasting accuracy [16]. A multi-objective optimizer called GA-ANN-GA,
was presented by using GA before training to tune the weight of an ANN automatically.
Then, the GA was used again after the ANN training phase; this model was used to
optimize heat transfer in rectangular perforated plate fins and the results show that
optimized fin geometry can be used in many heat transfer problems with less effort
[17]. Another novel hybrid algorithm called BRKGA-NN that used GA with ANN was
proposed to determine the connection weights, bias values of the hidden neurons, and
the number of hidden neurons in an ANN. The BRKGA-NN was evaluated on time-series
datasets, and the results showed that BRKGA-NN provided more effective predictions than
support vector regression (SVR), BPANN, and autoregressive integrated moving average
(ARIMA) [18]. PSO was integrated with deep neural networks (DNNs) in a recent study
[19] that proposed a new method called PSO-DNN to optimize the number of hidden
layer nodes (neurons). An evaluation of PSO-DNN on digital modulation classification
tasks confirmed that the proposed method is effective in optimizing DNN [19, 20]. A
recent study suggested a CNN hyperparameter optimization method using linearly de-
creasing weight PSO (LDWPSO). The proposed LDWPSO-CNN method was evaluated on
MNIST and CIFAR-10 datasets. The results showed increased accuracy by 4% from a
baseline CNN on the MNIST dataset and by 41% on the CIFAR-10 dataset for 10 epochs
[21, 22].

Table 1 summarizes related work, including the proposed models, datasets, evaluation
tasks, and key findings. Furthermore, several studies have contributed to improving
ANNs based on various optimization methods, which were reviewed in this paper
[23].

3. Materials and methods

This section explains the proposed method by presenting a detailed overview of the
working principles and definitions of ANN, FOX, and the proposed FOXANN.
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Table 1. Summary of hybrid ANN models based on optimization techniques.

Study Model Dataset Task Results

[13] ABC-ANN Electric Load Prediction Improved ANN accuracy and faster
convergence rate.

[14] ABC-MNN Iris Flower Classification Higher training accuracy with
generalization performance.

[15] CROANN Iris Flower, Breast
Cancer Wisconsin

Classification Superior performance compared to many
EA strategies with ANN.

[16] Adaptive EA-ANN Meteorological Prediction Improved prediction accuracy.
[17] GA-ANN-GA Heat Transfer Optimization Optimized fin geometry with less effort

for heat transfer problems.
[18] BRKGA-NN Time-Series Prediction More effective predictions compared to

SVR, BPANN, and ARIMA.
[19] PSO-DNN Digital Modulation Classification Effective optimization of DNN for digital

modulation classification tasks.
[22] LDWPSO-CNN MNIST, CIFAR-10 Classification Increased accuracy compared to CNN on

MNIST and CIFAR-10 datasets.
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Fig. 1. Artificial neural network architecture [27].

3.1. Artificial neural networks

The ANN consists of three main layers: the input, hidden, and output layers; each layer
is a cluster of multiple nodes (neurons). The input layer accepts and feeds the input data
to the hidden layer. Then, the output layer computes the last result (see Fig. 1) [24]. The
direction of data from the input to the output is called a feed-forward neural network. ANNs
can be used for several tasks, including classification, clustering, and pattern recognition.
The input data are multiplied by the value of the weights and passed to the hidden layer
neurons, each of which has an activation function to compute the neuron’s output as seen
in Equation (1) [25]:

z j = f

( n∑
i=1

(
xi × wi j

)
+ b j

)
(1)
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and

f =
1

1+ e−x (2)

where xi is the data input, wi j is the weight between the ith input neuron and the jth hidden
neuron, bi is the bias of the jth hidden neuron, and z j represents the output of the jth neuron
in the hidden layer. Moreover, the neuron’s output (z j) is fed into f activation function
(i.e., sigmoid Equation (2)). Many activation functions exist, such as sigmoid, tanh, RELU,
and softmax. Each function is problem-dependent (i.e., the sigmoid function, Equation (2),
is employed when the output range is expected to be between zero and one, in contrast,
the tanh function is employed when the output is between −1 and 1) [26].

The input of ANN must be standardized to reduce the variance between data. Moreover,
if the output is text data, it must be converted into numerical form to be accepted by
the neural network functions. ANNs require standardized input to mitigate the variance
between data and provide optimal performance. Additionally, if the output (label) is text
data, it must be converted into a numerical format compatible with the neural network’s
functions. This conversion and standardization enable the network to process and analyze
the data effectively [28].

E =
1
2

n∑
i=1

(yi − y′i )
2 (3)

δ j = (y j − y′j) · f ′(z j) (4)

wi j = wi j + η · xi · δ j (5)

In the above equations, E is the error between the expected (yi) and actual (y′i) outputs,
δ j is the error gradient for the unit y j, f ′(z j) is the derived activation function, wi j is the
weight connecting unit i to j, updated with learning rate η and input xi [29, 30].

The most important algorithm in an ANN is backpropagation, which involves feeding the
output to the network input again to update the weights. Backpropagation has four main
steps: the first is the computation of the error between the expected and the actual output
(target) using error functions like mean squared error (MSE), as seen in Equation (3). The
second is deriving the error gradient from outputs, which are used to update the weights
for the last layer in the network using Equation (4). The third is error backpropagation, in
which the error propagates to other layers. Lastly, the weights are updated based on the
derived error and learning rate by Equation (5) [31].

3.2. Fox optimizer algorithm

FOX is an optimization method motivated by red foxes’ hunting behavior. It searches for
the best position (solution) using static exploration and exploitation. Through exploration,
FOX uses a random walk policy, aided by its ability to detect ultrasound to find prey. Upon
detecting prey, the FOX agent enters the exploitation phase and waits for the sound of the
prey’s ultrasound. The FOX agent evaluates the time required to catch its prey based on
the sound’s travel time and then jumps [32]. The FOX algorithm requires two inputs: an
objective function and bounds. The objective function calculates the fitness value, while
the bounds determine the range of values for each variable in the optimization problem.
Algorithm 1 below introduces a visual representation of how the FOX is used to find the
best position; further details can be found in [11].



6 JOURNAL OF SOFT COMPUTING AND COMPUTER APPLICATIONS 2024;1:1001

Algorithm 1. FOX optimizer [11].

Input: Objective function, Problem bounds

1: Initialize the red fox population (X)
2: While iter < Max_iter
3: Initialize variables
4: Calculate the fitness of each search agent
5: Select Best_Position and Best_Fitness among the population
6: If fitnessi+1 < fitnessi
7: Best_Fitness = fitnessi+1
8: Best_Position = X(i)
9: EndIf
10: If r >= 0.5
11: Initialize time randomly;
12: Calculate Distance_Sound_travels
13: Calculate Sp_S
14: Calculate the distance from fox to prey
15: Tt = average time;
16: T = Tt/2;
17: Calculate jump
18: If p > 0.18
19: Find X(i+1) using Equation (6)
20: Elseif p <= 0.18
21: Find X (i+1) using Equation (7)
22: EndIf
23: else
24: Find MinT
25: Explore X (i+1) using Equation (8)
26: EndIf
27: Clip the position if it goes beyond the limits
28: Evaluate search agents by fitness
29: Update Best_Position
30: iter = iter + 1
31: EndWhile
32: return Best_Position & Best_Fitness

Output: Best Solution, Best Fitness

FOX employs a static trade-off between exploration and exploitation (50% for each).
The algorithm uses random walks to find the red fox’s prey during exploration. During
exploitation, the algorithm calculates the distance to the prey, jump height, and new
positions.

X(i+1) = DFPi ∗ Jumpi ∗ c1 (6)

X(i+1) = DFPi ∗ Jumpi ∗ c2 (7)

The two constants, c1 and c2, have been fixed at 0.18 and 0.82, respectively. These
constants are derived from observations made while studying the jumping behavior of
a red FOX. It has been observed that the FOX’s jumps are either directed toward the
northeast or the opposite direction. The FOX explores the Red Fox’s surroundings by
using the following equation to calculate its new position (this is considered exploration)
[33]:

X(i+1) = BestPosition ∗ rand(1, dimension) ∗MinT ∗ a (8)
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and

tt =
sum(Timestit )

dimension
, MinT = Min(tt ) (9)

a = 2
(

iter −
1

max(iter)

)
(10)

where tt is the time average equal to the summation of the time variable divided by
the dimension of the problem, iter is the current iteration, and max(iter) is maximum
iterations. Calculating both the MinT and a variable has a vital effect on the search phase
to move toward a solution that is close to the best solution. Using a random function
rand(1, dimension) ensures that the fox walks stochastically to explore the prey [11, 34].

3.3. Fox artificial neural network

The proposed FOXANN method is inspired by the use of FOX to tune the hyperparameter
automatically in Q-learning [35] and by FOX’s superior performance in solving common
optimization problems. This section presents an AAN based on FOX intended to solve
classification tasks in standard datasets, which are expected to improve the ANN’s ability
to solve ML problems. The ANN structure in the proposed method, FOXANN, remains
unchanged, and the essential improvement lies in the backpropagation algorithm. Since
this step was eliminated, the authors use FOX to improve the weights based on the
minimization of MSE in Equation (3).

The proposed model’s architecture is simple, as shown in Fig. 2. Once the data have
been processed for input, they are moved directly into the ANN. The feed-forward process
is then performed, where FOX iteratively optimizes the weights with minimum loss and
returns them to the ANN. The ANN uses the optimized weights and activation function to
compute the final output based on Equation (1).

3.4. Materials

The Iris Flower, a standard benchmark dataset in ML, contains 150 objects and four
features. These features represent the sepals and petals of the iris flower, with three
distinct classes: Setosa, Versicolor, and Virginica [36]. Furthermore, a well-known Breast
Cancer Wisconsin dataset offers insights into breast cancer diagnosis with 569 instances
and 30 features. Features are extracted from fine needle aspirates of breast tissue. This

Inpu
t da

ta (X
) 

Out
put 

labe
l (y)

 

  Activation function FOX ANN 

Optimized weights 

Weights 

Fig. 2. FOXANN architecture.
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Table 2. Datasets’ characteristics.

Dataset Instances Features Classes

Iris Flower 150 4 3
Breast Cancer Wisconsin 569 30 2
Wine 178 13 3

dataset provides valuable information for classifying malignant and benign tumors [37].
Moreover, the Wine dataset, which contains 178 instances and 13 features, including
attributes such as alcohol content, acidity levels, and color intensity, is used to classify
wines into one of three classes [21]. These datasets are explored in Table 2 and are basic
for classification tasks, helping researchers to explore and evaluate various ML algorithms.

All the datasets have been preprocessed using min-max normalization from Equa-
tion (11) to ensure that different feature scales are processed in the same range, typically
between 0 and 1. Moreover, the preprocessing using min-max normalization helps to
reduce variations in feature scales, ensuring that the model remains robust against
outliers.

Xnormalized =
X − Xmin

Xmax − Xmin
(11)

In the above equation, X is the feature vector used by the models as input, Xmin is the
minimum value in the vector, and Xmax is the maximum value in the vector.

4. Results

The performance of the FOXANN model was evaluated using the Iris Flower, Wine,
and Breast Cancer Wisconsin datasets, considering standard evaluation metrics such as
validation loss, accuracy, recall, precision, and F-score. The ANN topology has been
designed based on a previous study [38] that recommends using two hidden layers with
a small-to-median dataset. The first layer was twice the size of the input layer, and the
second layer was half the size of the input layer to better generalization. Additionally,
the initial weights of the ANN range [−3, 3] are based on a trial-and-error strategy. In
this paper, many experiments have been conducted to evaluate the proposed model’s
performance against traditional ANN and logistic regression (LR) classifiers. Furthermore,
it compares the most important results from the literature with the proposed model
FOXANN. The figures and tables below show the results obtained after 100 epochs using
the cross-validation method with 10 folds, which ensures that all data are involved in the
training process for each classifier [39]. In ML, visualizing the results is a crucial step
when analyzing and comparing the performances of different methods. The performance
of each classifier’s training process was measured by computing the validation loss using
the MSE. Fig. 3(A), (B), and (C) show the validation loss on the Iris Follower dataset, Breast
Cancer Wisconsin dataset, and Wine dataset, respectively. Furthermore, Fig. 3(D) presents
the average validation loss for all datasets.

Table 3 shows the results of the evaluations performed on three different datasets using
the proposed FOXANN, ANN, and LR. Firstly, the Iris Flower dataset was evaluated using
FOXANN and reached an accuracy of 0.9776 and a validation loss of 0.0107. The ANN
achieved an accuracy of 0.9754 and a validation loss of 0.0296, and the LR produced an
accuracy of 0.8555 with a validation loss of 0.1193. The Breast Cancer Wisconsin dataset
was then evaluated using FOXAN and achieved an accuracy of 0.9749 with a validation
loss of 0.0075, while the ANN achieved an accuracy of 0.9654 with a validation loss of
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Fig. 3. Validation loss on the dataset: (A) Iris Flower, (B) Breast Cancer Wisconsin, (C) Wine, and (D) average
validation loss.

Table 3. FOXANN Performance results.

Dataset Model Accuracy Loss Precision Recall F-Score

Iris Flower FOXANN 0.9776 0.0107 0.9664 0.9664 0.9664
ANN 0.9754 0.0296 0.9664 0.9598 0.9631
LR 0.8555 0.1193 0.9891 0.5733 0.7239

Breast Cancer Wisconsin FOXANN 0.9749 0.0075 0.9749 0.9749 0.9749
ANN 0.9654 0.0201 0.9654 0.9654 0.9654
LR 0.9596 0.0489 0.9596 0.9596 0.9596

Wine FOXANN 0.9969 0.0028 0.9834 0.9875 0.9902
ANN 0.9844 0.0137 0.9844 0.9788 0.9816
LR 0.9421 0.0671 0.9684 0.854 0.9076

Average results FOXANN 0.9831 0.0070 0.9749 0.9763 0.9772
ANN 0.9751 0.0211 0.9721 0.968 0.9700
LR 0.9191 0.0784 0.9724 0.7956 0.8637
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0.0201, and LR produced an accuracy of 0.9596 with a validation loss of 0.0489. Lastly,
the evaluation of the Wine dataset using FOXANN achieved an accuracy of 0.9969 with a
validation loss of 0.0028, while the ANN achieved an accuracy of 0.9844 with a validation
loss of 0.0137, and LR produced an accuracy of 0.9421 with a validation loss of 0.0671.

Furthermore, Table 3 shows that the average accuracy and average validation loss using
FOXAN, ANN, and LR, were 0.9831, 0.9751, and 0.9191, respectively. It also presents
important metrics, such as precision, recall, and F-score.

5. Discussion

The results in Table 3 and Fig. 3 show that FOXANN performs well compared with
ANN and RL methods, and it outperformed both the ANN and LR for the Iris Flower
dataset, achieving the highest accuracy of 0.9776. This indicates that FOXANN effectively
learned the patterns in the datasets and produced accurate predictions. It also achieved
the lowest validation loss of 0.0107, indicating better generalization ability compared to
ANN and LR. In the Breast Cancer Wisconsin dataset, FOXANN performed effectively, with
an accuracy of 0.9749 and the lowest validation loss of 0.0075. These results suggest that
FOXANN could recognize the fundamental patterns within the datasets effectively, leading
to accurate predictions and performance. The ANN performed well, with an accuracy of
0.9654 and a validation loss of 0.0201, and LR performed the worst, with an accuracy of
0.9596 and the highest validation loss of 0.0489.

The FOXANN performed better than the ANN and LR in evaluating the Wine dataset,
achieving the highest accuracy of 0.9969 and the lowest validation loss of 0.0028. This
result shows that FOXANN can effectively identify the patterns in the Wine dataset,
resulting in superior performance. The average accuracies for FOXANN, ANN, and LR were
0.9831, 0.9751, and 0.9191, respectively; the validation losses were 0.007, 0.0211, and
0.0784, respectively.

Finally, FOXANN surpassed both the ANN and LR algorithms due to its unique capabil-
ities based on the static balance between exploration and exploitation, which effectively
mitigates the local optima trap in the backpropagation algorithm. Table 4 highlights
FOXANN’s dominance over the proposed models in the literature. It outperformed the
ANN-based optimizers, such as ABC, CRO, and RFC, in terms of accuracy. Additionally,
FOXANN surpassed GA, PSO, EA, and LDWPSO in terms of interpretability and generality,
with a significantly low error rate of 0.007 compared to 0.01 (GA), 0.009 (PSO and

Table 4. Comparison between FOXANN and other models.

Model Reference Dataset Accuracy

FOXANN Proposed Iris Flower 0.9776
ABC-NN [14] 0.9666
ABC-MNN [14] 0.9722
CROANN [15] 0.9656
FOXANN Proposed Breast Cancer Wisconsin 0.9749
Decision tree (DT) [20] 0.9400
DT (PCA transformation) [20] 0.9600
CROANN [15] 0.9611
FOXANN Proposed Wine 0.9969
RFC [21] 0.8979
KNN [21] 0.8666



JOURNAL OF SOFT COMPUTING AND COMPUTER APPLICATIONS 2024;1:1001 11

LDWPSO), and 0.022 (EA). These results emphasize FOXANN’s broader applicability and
superior interpretability compared to ML methods that operate based on best optimizers.

6. Conclusion

This paper presents a novel model called FOXANN, which combines the FOX optimiza-
tion algorithm with an ANN algorithm to effectively increase performance in solving
machine learning problems. The backpropagation algorithm is replaced with FOX to
optimize the weights, improve classification performance, and avoid the local optima
that may be caused by the backpropagation algorithm. Experimental results on standard
datasets (Iris Flower, Breast Cancer Wisconsin, and Wine) show that FOXANN achieves
higher accuracy and lower validation loss than traditional ANN and LR methods, as well as
other methods proposed in the literature. Future studies may focus on enhancing the FOX
optimizer and integrating it with more complex ML models, such as deep learning models,
while considering imbalanced or imagery datasets. Furthermore, the FOX algorithm might
be used to present optimal ANN or CNN structure designs based on the problem features
to reduce the model’s complexity.
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